240 research outputs found

    Zero and Low Energy Thresholds in Quantum Simulation

    Get PDF
    Quantum simulation is the process of simulating a quantum mechanical system using either a quantum or a classical computer. Because quantum mechanical systems contain a large number of entangled particles, they are hard to simulate on a classical computer. It is the task of computational complexity theorists to estimate the amount of resources to do the same number of operations on either classical or quantum devices. This report first summarizes the state of the art in the field of quantum computing, and gives an example of a model of quantum computer and examples of quantum algorithms that are currently being researched. Then our own research about k-local quantum Hamiltonians is discussed. We developed programs to determine if a particular kind of k-local Hamiltonian has zero-energy solutions. First, to familiarize ourselves with quantum algorithms, we implemented a recently discovered polynomial-time 2-QSAT algorithm called SolveQ. Then we wrote several versions of brute force 7-variable 3-QSAT solvers and conducted experiments for the threshold of satisfiability. We empirically determined that the thresholds for the four versions, Versions 3, 4, 5, and 6, are 0.741, 1.714, 1.714, and 0.571, respectively. In addition, experiments were conducted involving the 6-qubit Ising model, working on which caused us to realize how inefficient the classical computer really is at simulating quantum mechanical systems. Our conclusion is that quantum simulation is much less feasible than classical simulation on a classical computer

    Low Latency Edge Classification GNN for Particle Trajectory Tracking on FPGAs

    Full text link
    In-time particle trajectory reconstruction in the Large Hadron Collider is challenging due to the high collision rate and numerous particle hits. Using GNN (Graph Neural Network) on FPGA has enabled superior accuracy with flexible trajectory classification. However, existing GNN architectures have inefficient resource usage and insufficient parallelism for edge classification. This paper introduces a resource-efficient GNN architecture on FPGAs for low latency particle tracking. The modular architecture facilitates design scalability to support large graphs. Leveraging the geometric properties of hit detectors further reduces graph complexity and resource usage. Our results on Xilinx UltraScale+ VU9P demonstrate 1625x and 1574x performance improvement over CPU and GPU respectively

    Topographic beta spiral and onshore intrusion of the Kuroshio Current

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 45 (2018): 287–296, doi:10.1002/2017GL076614.The Kuroshio intrusion plays a vitally important role in carrying nutrients to marginal seas. However, the key mechanism leading to the Kuroshio intrusion remains unclear. In this study we postulate a mechanism: when the Kuroshio runs onto steep topography northeast of Taiwan, the strong inertia gives rise to upwelling over topography, leading to a left-hand spiral in the stratified ocean. This is called the topographic beta spiral, which is a major player regulating the Kuroshio intrusion; this spiral can be inferred from hydrographic surveys. In the world oceans, the topographic beta spirals can be induced by upwelling generated by strong currents running onto steep topography. This is a vital mechanism regulating onshore intruding flow and the cross-shelf transport of energy and nutrients from the Kuroshio Current to the East China Sea. This topographic beta spiral reveals a long-term missing link between the oceanic general circulation theory and shelf dynamic theory.Strategic Priority Research Program of the Chinese Academy of Sciences Grant Numbers: XDA11020104, XDA110203052; National Natural Science Foundation of China (NSFC) Grant Numbers: 41576023, 41376030, 41476019; Foundation for Innovative Research Groups of NSFC Grant Number: 41421005; NSFC-Shandong Joint Fund for Marine Science Research Centers Grant Number: U1406401; Aoshan Sci-Tec Innovative Project of Qingdao National Laboratory for Marine Science and Technology Grant Number: 2016ASKJ02; National Key Research and Development Program of China Grant Numbers: 2017YFC1404000, 2016YFC1401601; National Key research and development Plan Sino-Australian Center for Healthy Coasts Grant Number: 2016YFE01015002018-07-1

    Anti-hyperuricemia effect of hesperetin is mediated by inhibiting the activity of xanthine oxidase and promoting excretion of uric acid

    Get PDF
    Hesperetin is a natural flavonoid with many biological activities. In view of hyperuricemia treatment, the effects of hesperetin in vivo and in vitro, and the underlying mechanisms, were explored. Hyperuricemia models induced by yeast extract (YE) or potassium oxonate (PO) in mice were created, as were models based on hypoxanthine and xanthine oxidase (XOD) in L-O2 cells and sodium urate in HEK293T cells. Serum level of uric acid (UA), creatinine (CRE), and urea nitrogen (BUN) were reduced significantly after hesperetin treatment in vivo. Hesperetin provided hepatoprotective effects and inhibited xanthine oxidase activity markedly, altered the level of malondialdehyde (MDA), glutathione peroxidase (GSH-PX) and catalase (CAT), downregulated the XOD protein expression, toll-like receptor (TLR)4, nucleotide binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, interleukin-18 (IL-18), upregulated forkhead box O3a (FOXO3a), manganese superoxide dismutase (MnSOD) in a uric acid-synthesis model in mice. Protein expression of organic anion transporter 1 (OAT1), OAT3, organic cationic transporter 1 (OCT1), and OCT2 was upregulated by hesperetin intervention in a uric acid excretion model in mice. Our results proposal that hesperetin exerts a uric acid-lowering effect through inhibiting xanthine oxidase activity and protein expression, intervening in the TLR4-NLRP3 inflammasome signaling pathway, and up-regulating expression of FOXO3a, MnSOD, OAT1, OAT3, OCT1, and OCT2 proteins. Thus, hesperetin could be a promising therapeutic agent against hyperuricemia

    Screening immune adjuvants for an inactivated vaccine against Erysipelothrix rhusiopathiae

    Get PDF
    In this study, we screened adjuvants for an inactivated vaccine against Erysipelothrix rhusiopathiae (E. rhusiopathiae). Inactivated cells of E. rhusiopathiae strain HG-1 were prepared as the antigen in five adjuvanted inactivated vaccines, including a mineral-oil-adjuvanted vaccine (Oli vaccine), aluminum-hydroxide-gel-adjuvanted vaccine (Alh vaccine), ISA201-biphasic-oil-emulsion-adjuvanted vaccine (ISA201 vaccine), GEL02-water-soluble-polymer-adjuvanted vaccine (GEL vaccine), and IMS1313-water-soluble-nanoparticle-adjuvanted vaccine (IMS1313 vaccine). The safety test results of subcutaneous inoculation in mice showed that Oli vaccine had the most severe side effects, with a combined score of 35, followed by the ISA201 vaccine (25 points), Alh vaccine (20 points), GEL vaccine (10 points), and IMS1313 vaccine (10 points). A dose of 1.5LD50 of strain HG-1 was used to challenge the mice intraperitoneally, 14 days after their second immunization. The protective efficacy of Oli vaccine and Alh vaccine was 100% (8/8), whereas that of the other three adjuvanted vaccines was 88% (7/8). Challenge with 2.5LD50 of strain HG-1 resulted in a 100% survival rate, demonstrating the 100% protective efficacy of the Oli vaccine, followed by the GEL vaccine (71%, 5/7), IMS1313 vaccine (57%, 4/7), ISA201 vaccine (43%, 3/7), and Alh vaccine (29%, 2/7). Challenge with 4LD50 of strain HG-1 showed 100% (7/7) protective efficacy of the Oli vaccine and 71% (5/7) protective efficacy of the GEL vaccine, whereas the protective efficacy of other three adjuvanted vaccine was 14% (1/7). The Alh and GEL vaccines were selected for comparative tests in piglets, and both caused minor side effects. A second immunization with these two adjuvanted vaccines conferred 60 and 100% protective efficacy, respectively, after the piglets were challenged via an ear vein with 8LD100 of strain HG-1. After challenge with 16LD100 of strain HG-1, the Alh and GEL vaccines showed 40% and 100% protective efficacy, respectively. Our results suggested that GEL is the optimal adjuvant for an inactivated vaccine against E. rhusiopathiae

    Low-Temperature Preparation of Superparamagnetic CoFe2O4 Microspheres with High Saturation Magnetization

    Get PDF
    Based on a low-temperature route, monodispersed CoFe2O4 microspheres (MSs) were fabricated through aggregation of primary nanoparticles. The microstructural and magnetic characteristics of the as-prepared MSs were characterized by X-ray diffraction/photoelectron spectroscopy, scanning/transmitting electron microscopy, and vibrating sample magnetometer. The results indicate that the diameters of CoFe2O4 MSs with narrow size distribution can be tuned from over 200 to ~330 nm. Magnetic measurements reveal these MSs exhibit superparamagnetic behavior at room temperature with high saturation magnetization. Furthermore, the mechanism of formation of the monodispersed CoFe2O4 MSs was discussed on the basis of time-dependent experiments, in which hydrophilic PVP plays a crucial role
    • …
    corecore